博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Spark DateType cast 踩坑
阅读量:6343 次
发布时间:2019-06-22

本文共 10305 字,大约阅读时间需要 34 分钟。

  hot3.png

前言

在平时的 Spark 处理中常常会有把一个如 2012-12-12 这样的 date 类型转换成一个 long 的 Unix time 然后进行计算的需求.下面是一段示例代码:

val schema = StructType(  Array(    StructField("id", IntegerType, nullable = true),    StructField("birth", DateType, nullable = true),    StructField("time", TimestampType, nullable = true)  ))val data = Seq(  Row(1, Date.valueOf("2012-12-12"), Timestamp.valueOf("2016-09-30 03:03:00")),  Row(2, Date.valueOf("2016-12-14"), Timestamp.valueOf("2016-12-14 03:03:00")))val df = spark.createDataFrame(spark.sparkContext.parallelize(data),schema)

问题 & 解决

首先很直观的是直接把DateType cast 成 LongType, 如下:

df.select(df.col("birth").cast(LongType))

但是这样出来都是 null, 这是为什么? 答案就在 org.apache.spark.sql.catalyst.expressions.Cast 中, 先看 canCast 方法, 可以看到 DateType 其实是可以转成 NumericType 的, 然后再看下面castToLong的方法, 可以看到case DateType => buildCast[Int](_, d => null)居然直接是个 null, 看提交记录其实这边有过反复, 然后为了和 hive 统一, 所以返回最后还是返回 null 了.

虽然 DateType 不能直接 castToLong, 但是TimestampType可以, 所以这里的解决方案就是先把 DateType cast 成 TimestampType. 但是这里又会有一个非常坑爹的问题: 时区问题.

首先明确一个问题, 就是这个放到了 spark 中的 2012-12-12 到底 UTC 还是我们当前时区? 答案是如果没有经过特殊配置, 这个2012-12-12代表的是 当前时区的 2012-12-12 00:00:00., 对应 UTC 其实是: 2012-12-11 16:00:00, 少了8小时. 这里还顺便说明了Spark 入库 Date 数据的时候是带着时区的.

然后再看DateType cast toTimestampType 的代码, 可以看到buildCast[Int](_, d => DateTimeUtils.daysToMillis(d, timeZone) * 1000), 这里是带着时区的, 但是 Spark SQL 默认会用当前机器的时区. 但是大家一般底层数据比如这个2016-09-30, 都是代表的 UTC 时间, 在用 Spark 处理数据的时候, 这个时间还是 UTC 时间, 只有通过 JDBC 出去的时间才会变成带目标时区的结果. 经过摸索, 这里有两种解决方案:

  1. 配置 Spark 的默认时区config("spark.sql.session.timeZone", "UTC"), 最直观. 这样直接写 df.select(df.col("birth").cast(TimestampType).cast(LongType)) 就可以了.
  2. 不配置 conf, 正面刚: df.select(from_utc_timestamp(to_utc_timestamp(df.col("birth"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID).cast(LongType)), 可以看到各种 cast, 这是区别:
  • 没有配置 UTC: from_utc_timestamp(to_utc_timestamp(lit("2012-12-11 16:00:00"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID)
  • 配置了 UTC: from_utc_timestamp(to_utc_timestamp(lit("2012-12-12 00:00:00"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID) 多了8小时
/**   * Returns true iff we can cast `from` type to `to` type.   */  def canCast(from: DataType, to: DataType): Boolean = (from, to) match {    case (fromType, toType) if fromType == toType => true    case (NullType, _) => true    case (_, StringType) => true    case (StringType, BinaryType) => true    case (StringType, BooleanType) => true    case (DateType, BooleanType) => true    case (TimestampType, BooleanType) => true    case (_: NumericType, BooleanType) => true    case (StringType, TimestampType) => true    case (BooleanType, TimestampType) => true    case (DateType, TimestampType) => true    case (_: NumericType, TimestampType) => true    case (StringType, DateType) => true    case (TimestampType, DateType) => true    case (StringType, CalendarIntervalType) => true    case (StringType, _: NumericType) => true    case (BooleanType, _: NumericType) => true    case (DateType, _: NumericType) => true    case (TimestampType, _: NumericType) => true    case (_: NumericType, _: NumericType) => true    ...  }
private[this] def castToLong(from: DataType): Any => Any = from match {    case StringType =>      val result = new LongWrapper()      buildCast[UTF8String](_, s => if (s.toLong(result)) result.value else null)    case BooleanType =>      buildCast[Boolean](_, b => if (b) 1L else 0L)    case DateType =>      buildCast[Int](_, d => null)    case TimestampType =>      buildCast[Long](_, t => timestampToLong(t))    case x: NumericType =>      b => x.numeric.asInstanceOf[Numeric[Any]].toLong(b)  }
// TimestampConverter  private[this] def castToTimestamp(from: DataType): Any => Any = from match {    ...    case DateType =>      buildCast[Int](_, d => DateTimeUtils.daysToMillis(d, timeZone) * 1000)    // TimestampWritable.decimalToTimestamp    ...  }
/**   * Given a timestamp, which corresponds to a certain time of day in the given timezone, returns   * another timestamp that corresponds to the same time of day in UTC.   * @group datetime_funcs   * @since 1.5.0   */  def to_utc_timestamp(ts: Column, tz: String): Column = withExpr {    ToUTCTimestamp(ts.expr, Literal(tz))  }  /**   * Given a timestamp, which corresponds to a certain time of day in UTC, returns another timestamp   * that corresponds to the same time of day in the given timezone.   * @group datetime_funcs   * @since 1.5.0   */  def from_utc_timestamp(ts: Column, tz: String): Column = withExpr {    FromUTCTimestamp(ts.expr, Literal(tz))  }

Deep dive

配置源码解读:

val SESSION_LOCAL_TIMEZONE = buildConf("spark.sql.session.timeZone").stringConf.createWithDefaultFunction(() => TimeZone.getDefault.getID)

def sessionLocalTimeZone: String = getConf(SQLConf.SESSION_LOCAL_TIMEZONE)

/** * Replace [[TimeZoneAwareExpression]] without timezone id by its copy with session local * time zone. */case class ResolveTimeZone(conf: SQLConf) extends Rule[LogicalPlan] {  private val transformTimeZoneExprs: PartialFunction[Expression, Expression] = {    case e: TimeZoneAwareExpression if e.timeZoneId.isEmpty =>      e.withTimeZone(conf.sessionLocalTimeZone)    // Casts could be added in the subquery plan through the rule TypeCoercion while coercing    // the types between the value expression and list query expression of IN expression.    // We need to subject the subquery plan through ResolveTimeZone again to setup timezone    // information for time zone aware expressions.    case e: ListQuery => e.withNewPlan(apply(e.plan))  }  override def apply(plan: LogicalPlan): LogicalPlan =    plan.transformAllExpressions(transformTimeZoneExprs)  def resolveTimeZones(e: Expression): Expression = e.transform(transformTimeZoneExprs)}/** * Mix-in trait for constructing valid [[Cast]] expressions. */trait CastSupport {  /**   * Configuration used to create a valid cast expression.   */  def conf: SQLConf  /**   * Create a Cast expression with the session local time zone.   */  def cast(child: Expression, dataType: DataType): Cast = {    Cast(child, dataType, Option(conf.sessionLocalTimeZone))  }}

org.apache.spark.sql.catalyst.analysis.Analyzer#batches 可以看到有ResolveTimeZone

lazy val batches: Seq[Batch] = Seq(    Batch("Resolution", fixedPoint,      ResolveTableValuedFunctions ::      ResolveRelations ::      ResolveReferences ::      ...      ResolveTimeZone(conf) ::      ResolvedUuidExpressions ::      TypeCoercion.typeCoercionRules(conf) ++      extendedResolutionRules : _*),    Batch("Post-Hoc Resolution", Once, postHocResolutionRules: _*),    Batch("View", Once,      AliasViewChild(conf)),    Batch("Nondeterministic", Once,      PullOutNondeterministic),    Batch("UDF", Once,      HandleNullInputsForUDF),    Batch("FixNullability", Once,      FixNullability),    Batch("Subquery", Once,      UpdateOuterReferences),    Batch("Cleanup", fixedPoint,      CleanupAliases)  )

Test Example

对于时区理解

在不同的时区下 sql.Timestamp 对象的表现:

这里是 GMT+8:

Timestamp "2014-06-24 07:22:15.0"    - fastTime = 1403565735000    - "2014-06-24T07:22:15.000+0700"

如果是 GMT+7, 会显示如下,可以看到是同一个毫秒数

Timestamp "2014-06-24 06:22:15.0"    - fastTime = 1403565735000    - "2014-06-24T06:22:15.000+0700"
test("ColumnBatch") {    val schema = StructType(      Array(        StructField("id", IntegerType, nullable = true),        StructField("birth", DateType, nullable = true),        StructField("time", TimestampType, nullable = true)      ))    val columnarBatch = ColumnarBatch.allocate(schema, MemoryMode.ON_HEAP, 1024)    val c0 = columnarBatch.column(0)    val c1 = columnarBatch.column(1)    val c2 = columnarBatch.column(2)    c0.putInt(0, 0)    // 1355241600, /3600/24 s to days    c1.putInt(0, 1355241600 / 3600 / 24)    // microsecond    c2.putLong(0, 1355285532000000L)    val internal0 = columnarBatch.getRow(0)    //a way converting internal row to unsafe row.    //val convert = UnsafeProjection.create(schema)    //val internal = convert.apply(internal0)    val enc = RowEncoder.apply(schema).resolveAndBind()    val row = enc.fromRow(internal0)    val df = spark.createDataFrame(Lists.newArrayList(row), schema)    TimeZone.setDefault(TimeZone.getTimeZone("UTC"))    val tsStr0 = df.select(col("time")).head().getTimestamp(0).toString    val ts0 = df.select(col("time").cast(LongType)).head().getLong(0)    TimeZone.setDefault(TimeZone.getTimeZone("GMT+8"))    val tsStr1 = df.select(col("time")).head().getTimestamp(0).toString    val ts1 = df.select(col("time").cast(LongType)).head().getLong(0)    assert(true, "2012-12-12 04:12:12.0".equals(tsStr0))    assert(true, "2012-12-12 12:12:12.0".equals(tsStr1))    // to long 之后毫秒数都是一样的    assert(true, ts0 == ts1)  }

番外 : ImplicitCastInputTypes

我们自己定义了一个Expr, 要求接受两个 input 为 DateType 的参数.

case class MockExpr(d0: Expression, d1: Expression)  extends BinaryExpression with ImplicitCastInputTypes {  override def left: Expression = d0  override def right: Expression = d1  override def inputTypes: Seq[AbstractDataType] = Seq(DateType, DateType)  override def dataType: DataType = IntegerType  override def nullSafeEval(date0: Any, date1: Any): Any = {    ...  }}

假设我们有如下调用, 请问这个调用符合预期吗? 结论是符合的, 因为有ImplicitCastInputTypes.

lit("2012-11-12 12:12:12.0").cast(TimestampType)lit("2012-12-12 12:12:12.0").cast(TimestampType)Column(MockExpr(tsc1.expr, tsc2.expr))

org.apache.spark.sql.catalyst.analysis.TypeCoercion.ImplicitTypeCasts

case e: ImplicitCastInputTypes if e.inputTypes.nonEmpty =>val children: Seq[Expression] = e.children.zip(e.inputTypes).map { case (in, expected) =>  // If we cannot do the implicit cast, just use the original input.  implicitCast(in, expected).getOrElse(in)}e.withNewChildren(children)def implicitCast(e: Expression, expectedType: AbstractDataType): Option[Expression] = {  implicitCast(e.dataType, expectedType).map { dt =>    if (dt == e.dataType) e else Cast(e, dt)  }}

org.apache.spark.sql.catalyst.expressions.Cast#castToDate #DateConverter

private[this] def castToDate(from: DataType): Any => Any = from match {  case StringType =>    buildCast[UTF8String](_, s => DateTimeUtils.stringToDate(s).orNull)  case TimestampType =>    // throw valid precision more than seconds, according to Hive.    // Timestamp.nanos is in 0 to 999,999,999, no more than a second.    buildCast[Long](_, t => DateTimeUtils.millisToDays(t / 1000L, timeZone))}

转载于:https://my.oschina.net/tjt/blog/1839900

你可能感兴趣的文章
nginx配置80端口访问8080+项目名地址
查看>>
BZOJ1969: [Ahoi2005]LANE 航线规划(LCT)
查看>>
linux内存管理之malloc、vmalloc、kmalloc的区别
查看>>
ubuntu14.04终端分屏terminator的安装使用与配置
查看>>
amazeui学习笔记--js插件(UI增强4)--下拉组件Dropdown
查看>>
转:比特币入门教程
查看>>
自旋锁、排队自旋锁、MCS锁、CLH锁
查看>>
GreenDao 数据库升级 连接多个DB文件 或者指定不同的model&dao目录
查看>>
M1卡破解(自从学校升级系统之后,还准备在研究下)【转】
查看>>
vue 访问子组件示例 或者子元素
查看>>
linux内核--自旋锁的理解
查看>>
js进阶 12-8 如何知道上一个函数的返回值是什么(如何判断上一个函数是否执行成功)...
查看>>
Oracle Blob查询和插入
查看>>
game 角色相关记录
查看>>
网络虚拟化
查看>>
activemq的消息确认机制ACK
查看>>
SpringBoot入坑-配置文件使用
查看>>
apache2.4.33伪静态配置入门教程(1)
查看>>
银行卡的三个磁道
查看>>
OpenSSL 提取 pfx 数字证书公钥与私钥
查看>>